Feedstock Diffusion and Decomposition in Aligned Carbon Nanotube Arrays

نویسندگان

  • Rong Xiang
  • Erik Einarsson
  • Junichiro Shiomi
  • Shigeo Maruyama
چکیده

Feedstock diffusion and decomposition in the root growth of aligned carbon nanotube (CNT) arrays is discussed. A nondimensional modulus is proposed to differentiate catalystpoisoning controlled growth deceleration from one which is diffusion controlled. It is found that, at current stage, aligned multi-walled carbon nanotube (MWNT) arrays are usually free of feedstock diffusion resistance. However, for single-walled carbon nanotube (SWNT) arrays, since the inter-tube distance is much smaller than the mean free path of carbon source (ethanol here), high diffusion resistance is significantly limiting the growth rate. The method presented here is also able to predict the critical lengths in different chemical vapor deposition (CVD) processes from which CNT arrays begin to meet this diffusion limit, as well as the possible solutions to this diffusion caused growth deceleration. The diffusion of carbon source inside of an array becomes more important when we found ethanol undergoes severe thermal decomposition at the reaction temperature. This means, in a typical alochol CVD, hydrocarbons and radicals decomposed from ethanol may collide and react with the outer walls of SWNTs before reaching catalyst particles. We found when flow rate is low and ethanol is thoroughly decomposed, the produced SWNTs contain more soot structures than the SWNTs obtained at higher ethanol flow rate. Understanding the mass transport and reaction inside a SWNT array is helpful to synthesize longer and cleaner SWNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring growth kinetics of carbon nanotube arrays by in situ optical diagnostics and modeling

Simple kinetic models of carbon nanotube growth have been able to successfully link together many experimental parameters involved in the growth of carbon nanotubes for practical applications including the prediction of growth rates, terminal lengths, number of walls, activation energies, and their dependences on the growth environment. The implications of recent experiments utilizing in situ m...

متن کامل

Functionalized Carbon Nanotubes Produced by APCVD using Camphor

A simple chemical vapor deposition technique at atmospheric pressure (APCVD) is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs) without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O) is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for produc...

متن کامل

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we i...

متن کامل

Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock

Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates...

متن کامل

Carbon Nanotube Composites Aligned Carbon Nanotubes For Multifunctional Nanocomposites and Nanodevices

Aligned Carbon Nanotubes For Multifunctional Nanocomposites and Nanodevices L Dai, L Qu (Univ of Dayton) We have previously developed a simple pyrolytic method for large-scale production of aligned carbon nanotube arrays perpendicular to the substrate. These aligned carbon nanotube arrays can be transferred onto various substrates of particular interest in either a patterned or non-patterned fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009